LeetCode 1143 – 最长公共子序列

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,”ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。

题目分析

动态规划
设 dp[i][j] 表示 text1 的前 i 位与 text2 的前 j 位最长公共序列的长度,则
– i 和 j 字符相等时,dp[i][j] = dp[i-1][j-1] + 1
– i 和 j 字符不等时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])

时间复杂度 O(m * n),m 和 n 是两个字符的长度

Java

public int longestCommonSubsequence(String text1, String text2) {
    int m = text1.length(), n = text2.length();
    int[][] dp = new int[m + 1][n + 1];
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                dp[i][j] = dp[i - 1][j - 1] + 1;
            } else {
                dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
            }
        }
    }
    return dp[m][n];
}

Kotlin

fun longestCommonSubsequence(text1: String, text2: String): Int {
    val m = text1.length
    val n = text2.length
    val dp = Array(m + 1) { IntArray(n + 1) }
    for (i in 1..m) {
        for (j in 1..n) {
            if (text1[i - 1] == text2[j - 1]) {
                dp[i][j] = dp[i - 1][j - 1] + 1
            } else {
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
            }
        }
    }
    return dp[m][n]
}

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

开始在上面输入您的搜索词,然后按回车进行搜索。按ESC取消。

返回顶部